Exercise 2.3.2

Consider the differential equation

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0
$$

Determine the eigenvalues λ (and corresponding eigenfunctions) if ϕ satisfies the following boundary conditions. Analyze three cases $(\lambda>0, \lambda=0, \lambda<0)$. You may assume that the eigenvalues are real.
(a) $\phi(0)=0$ and $\phi(\pi)=0$
(b) $\phi(0)=0$ and $\phi(1)=0$
(c) $\frac{d \phi}{d x}(0)=0$ and $\frac{d \phi}{d x}(L)=0$ (If necessary, see Section 2.4.1.)
(d) $\phi(0)=0$ and $\frac{d \phi}{d x}(L)=0$
(e) $\frac{d \phi}{d x}(0)=0$ and $\phi(L)=0$
(f) $\phi(a)=0$ and $\phi(b)=0$ (You may assume that $\lambda>0$.)
(g) $\phi(0)=0$ and $\frac{d \phi}{d x}(L)+\phi(L)=0$ (If necessary, see Section 5.8.)

Solution

Part (a)

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0, \quad \phi(0)=0, \phi(\pi)=0
$$

Suppose first that λ is positive: $\lambda=\mu^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}+\mu^{2} \phi=0
$$

The general solution is written in terms of sine and cosine.

$$
\phi(x)=C_{1} \cos \mu x+C_{2} \sin \mu x
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
& \phi(0)=C_{1}=0 \\
& \phi(\pi)=C_{1} \cos \mu \pi+C_{2} \sin \mu \pi=0
\end{aligned}
$$

The second equation reduces to $C_{2} \sin \mu \pi=0$. In order to avoid the trivial solution, we insist that $C_{2} \neq 0$. Then

$$
\begin{aligned}
\sin \mu \pi & =0 \\
\mu \pi & =n \pi, \quad n=1,2, \ldots \\
\mu_{n} & =n, \quad n=1,2, \ldots
\end{aligned}
$$

Therefore, there are positive eigenvalues $\lambda_{n}=n^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
\phi(x) & =C_{1} \cos \mu x+C_{2} \sin \mu x \\
& =C_{2} \sin \mu x \quad \rightarrow \quad \phi_{n}(x)=\sin n x .
\end{aligned}
$$

Suppose secondly that λ is zero: $\lambda=0$.

$$
\frac{d^{2} \phi}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
\begin{gathered}
\frac{d \phi}{d x}=C_{3} \\
\phi(x)=C_{3} x+C_{4}
\end{gathered}
$$

Apply the boundary conditions now to determine C_{3} and C_{4}.

$$
\begin{aligned}
& \phi(0)=C_{4}=0 \\
& \phi(\pi)=C_{3} \pi+C_{4}=0
\end{aligned}
$$

Since $C_{4}=0$, the second equation gives $C_{3}=0$. The trivial solution is obtained, which means that zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\gamma^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}-\gamma^{2} \phi=0
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
\phi(x)=C_{5} \cosh \gamma x+C_{6} \sinh \gamma x
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
& \phi(0)=C_{5}=0 \\
& \phi(\pi)=C_{5} \cosh \gamma \pi+C_{6} \sinh \gamma \pi=0
\end{aligned}
$$

The second equation reduces to $C_{6} \sinh \gamma \pi=0$. Because hyperbolic sine is not oscillatory, C_{6} must be zero. This results in the trivial solution, which means that there are no negative eigenvalues.

Part (b)

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0, \quad \phi(0)=0, \phi(1)=0
$$

Suppose first that λ is positive: $\lambda=\mu^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}+\mu^{2} \phi=0
$$

The general solution is written in terms of sine and cosine.

$$
\phi(x)=C_{1} \cos \mu x+C_{2} \sin \mu x
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
& \phi(0)=C_{1}=0 \\
& \phi(1)=C_{1} \cos \mu+C_{2} \sin \mu=0
\end{aligned}
$$

The second equation reduces to $C_{2} \sin \mu=0$. In order to avoid the trivial solution, we insist that $C_{2} \neq 0$. Then

$$
\begin{aligned}
\sin \mu & =0 \\
\mu_{n} & =n \pi, \quad n=1,2, \ldots .
\end{aligned}
$$

Therefore, there are positive eigenvalues $\lambda_{n}=n^{2} \pi^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
\phi(x) & =C_{1} \cos \mu x+C_{2} \sin \mu x \\
& =C_{2} \sin \mu x \quad \rightarrow \quad \phi_{n}(x)=\sin n \pi x .
\end{aligned}
$$

Suppose secondly that λ is zero: $\lambda=0$.

$$
\frac{d^{2} \phi}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
\begin{gathered}
\frac{d \phi}{d x}=C_{3} \\
\phi(x)=C_{3} x+C_{4}
\end{gathered}
$$

Apply the boundary conditions now to determine C_{3} and C_{4}.

$$
\begin{aligned}
& \phi(0)=C_{4}=0 \\
& \phi(1)=C_{3}+C_{4}=0
\end{aligned}
$$

Since $C_{4}=0$, the second equation gives $C_{3}=0$. The trivial solution is obtained, which means that zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\gamma^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}-\gamma^{2} \phi=0
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
\phi(x)=C_{5} \cosh \gamma x+C_{6} \sinh \gamma x
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
& \phi(0)=C_{5}=0 \\
& \phi(1)=C_{5} \cosh \gamma+C_{6} \sinh \gamma=0
\end{aligned}
$$

The second equation reduces to $C_{6} \sinh \gamma=0$. Because hyperbolic sine is not oscillatory, C_{6} must be zero. This results in the trivial solution, which means that there are no negative eigenvalues.

Part (c)

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0, \quad \frac{d \phi}{d x}(0)=0, \frac{d \phi}{d x}(L)=0
$$

Suppose first that λ is positive: $\lambda=\mu^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}+\mu^{2} \phi=0
$$

The general solution is written in terms of sine and cosine.

$$
\phi(x)=C_{1} \cos \mu x+C_{2} \sin \mu x
$$

Take a derivative of it with respect to x.

$$
\phi^{\prime}(x)=\mu\left(-C_{1} \sin \mu x+C_{2} \cos \mu x\right)
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
\phi^{\prime}(0) & =\mu\left(C_{2}\right)=0 \quad \rightarrow \quad C_{2}=0 \\
\phi^{\prime}(L) & =\mu\left(-C_{1} \sin \mu L+C_{2} \cos \mu L\right)=0
\end{aligned}
$$

The second equation reduces to $-C_{1} \mu \sin \mu L=0$. In order to avoid the trivial solution, we insist that $C_{1} \neq 0$. Then

$$
\begin{aligned}
-\mu \sin \mu L & =0 \\
\sin \mu L & =0 \\
\mu L & =n \pi, \quad n=1,2, \ldots \\
\mu_{n} & =\frac{n \pi}{L}, \quad n=1,2, \ldots
\end{aligned}
$$

Therefore, there are positive eigenvalues $\lambda_{n}=n^{2} \pi^{2} / L^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
\phi(x) & =C_{1} \cos \mu x+C_{2} \sin \mu x \\
& =C_{1} \cos \mu x \quad \rightarrow \quad \phi_{n}(x)=\cos \frac{n \pi x}{L} .
\end{aligned}
$$

Suppose secondly that λ is zero: $\lambda=0$.

$$
\frac{d^{2} \phi}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
\frac{d \phi}{d x}=C_{3}
$$

C_{3} is set to zero to satisfy the boundary conditions. Integrate once more.

$$
\phi(x)=C_{4}
$$

Zero is an eigenvalue because ϕ is nonzero; the eigenfunction associated with it is $\phi_{0}(x)=1$.
Suppose thirdly that λ is negative: $\lambda=-\gamma^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}-\gamma^{2} \phi=0
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
\phi(x)=C_{5} \cosh \gamma x+C_{6} \sinh \gamma x
$$

Take a derivative of it with respect to x.

$$
\phi^{\prime}(x)=\gamma\left(C_{5} \sinh \gamma x+C_{6} \cosh \gamma x\right)
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
& \phi^{\prime}(0)=\gamma\left(C_{6}\right)=0 \quad \rightarrow \quad C_{6}=0 \\
& \phi^{\prime}(L)=\gamma\left(C_{5} \sinh \gamma L+C_{6} \cosh \gamma L\right)=0
\end{aligned}
$$

The second equation reduces to $C_{5} \gamma \sinh \gamma L=0$. Because hyperbolic sine is not oscillatory, C_{5} must be zero. This results in the trivial solution, which means that there are no negative eigenvalues.

Part (d)

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0, \quad \phi(0)=0, \frac{d \phi}{d x}(L)=0
$$

Suppose first that λ is positive: $\lambda=\mu^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}+\mu^{2} \phi=0
$$

The general solution is written in terms of sine and cosine.

$$
\phi(x)=C_{1} \cos \mu x+C_{2} \sin \mu x
$$

Take a derivative of it with respect to x.

$$
\phi^{\prime}(x)=\mu\left(-C_{1} \sin \mu x+C_{2} \cos \mu x\right)
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
\phi(0) & =C_{1}=0 \\
\phi^{\prime}(L) & =\mu\left(-C_{1} \sin \mu L+C_{2} \cos \mu L\right)=0
\end{aligned}
$$

The second equation reduces to $C_{2} \mu \cos \mu L=0$. In order to avoid the trivial solution, we insist that $C_{2} \neq 0$. Then

$$
\begin{aligned}
\mu \cos \mu L & =0 \\
\cos \mu L & =0 \\
\mu L & =\frac{1}{2}(2 n-1) \pi, \quad n=1,2, \ldots \\
\mu_{n} & =\frac{1}{2 L}(2 n-1) \pi, \quad n=1,2, \ldots
\end{aligned}
$$

Therefore, there are positive eigenvalues $\lambda_{n}=(2 n-1)^{2} \pi^{2} /\left(4 L^{2}\right)$, and the eigenfunctions associated with them are

$$
\begin{aligned}
\phi(x) & =C_{1} \cos \mu x+C_{2} \sin \mu x \\
& =C_{2} \sin \mu x \quad \rightarrow \quad \phi_{n}(x)=\sin \frac{1}{2 L}(2 n-1) \pi x .
\end{aligned}
$$

Suppose secondly that λ is zero: $\lambda=0$.

$$
\frac{d^{2} \phi}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
\frac{d \phi}{d x}=C_{3}
$$

C_{3} is set to zero to satisfy $\phi^{\prime}(L)=0$. Integrate once more.

$$
\phi(x)=C_{4}
$$

C_{4} is set to zero to satisfy $\phi(0)=0$. This results in the trivial solution, which means that zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\gamma^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}-\gamma^{2} \phi=0
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
\phi(x)=C_{5} \cosh \gamma x+C_{6} \sinh \gamma x
$$

Take a derivative of it with respect to x.

$$
\phi^{\prime}(x)=\gamma\left(C_{5} \sinh \gamma x+C_{6} \cosh \gamma x\right)
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
\phi(0) & =C_{5}=0 \\
\phi^{\prime}(L) & =\gamma\left(C_{5} \sinh \gamma L+C_{6} \cosh \gamma L\right)=0
\end{aligned}
$$

The second equation reduces to $C_{6} \gamma \cosh \gamma L=0$. Because hyperbolic cosine is not oscillatory, C_{6} must be zero. This results in the trivial solution, which means that there are no negative eigenvalues.

Part (e)

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0, \quad \frac{d \phi}{d x}(0)=0, \phi(L)=0
$$

Suppose first that λ is positive: $\lambda=\mu^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}+\mu^{2} \phi=0
$$

The general solution is written in terms of sine and cosine.

$$
\phi(x)=C_{1} \cos \mu x+C_{2} \sin \mu x
$$

Take a derivative of it with respect to x.

$$
\phi^{\prime}(x)=\mu\left(-C_{1} \sin \mu x+C_{2} \cos \mu x\right)
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
& \phi^{\prime}(0)=\mu\left(C_{2}\right)=0 \quad \rightarrow \quad C_{2}=0 \\
& \phi(L)=C_{1} \cos \mu L+C_{2} \sin \mu L=0
\end{aligned}
$$

The second equation reduces to $C_{1} \cos \mu L=0$. In order to avoid the trivial solution, we insist that $C_{1} \neq 0$. Then

$$
\begin{aligned}
\cos \mu L & =0 \\
\mu L & =\frac{1}{2}(2 n-1) \pi, \quad n=1,2, \ldots \\
\mu_{n} & =\frac{1}{2 L}(2 n-1) \pi, \quad n=1,2, \ldots
\end{aligned}
$$

Therefore, there are positive eigenvalues $\lambda_{n}=(2 n-1)^{2} \pi^{2} /\left(4 L^{2}\right)$, and the eigenfunctions associated with them are

$$
\begin{aligned}
\phi(x) & =C_{1} \cos \mu x+C_{2} \sin \mu x \\
& =C_{1} \cos \mu x \quad \rightarrow \quad \phi_{n}(x)=\cos \frac{1}{2 L}(2 n-1) \pi x .
\end{aligned}
$$

Suppose secondly that λ is zero: $\lambda=0$.

$$
\frac{d^{2} \phi}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
\frac{d \phi}{d x}=C_{3}
$$

C_{3} is set to zero to satisfy $\phi^{\prime}(0)=0$. Integrate once more.

$$
\phi(x)=C_{4}
$$

C_{4} is set to zero to satisfy $\phi(L)=0$. This results in the trivial solution, which means that zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\gamma^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}-\gamma^{2} \phi=0
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
\phi(x)=C_{5} \cosh \gamma x+C_{6} \sinh \gamma x
$$

Take a derivative of it with respect to x.

$$
\phi^{\prime}(x)=\gamma\left(C_{5} \sinh \gamma x+C_{6} \cosh \gamma x\right)
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
& \phi^{\prime}(0)=\gamma\left(C_{6}\right)=0 \quad \rightarrow \quad C_{6}=0 \\
& \phi(L)=C_{5} \cosh \gamma L+C_{6} \sinh \gamma L=0
\end{aligned}
$$

The second equation reduces to $C_{5} \cosh \gamma L=0$. Because hyperbolic cosine is not oscillatory, C_{5} must be zero. This results in the trivial solution, which means that there are no negative eigenvalues.

Part (f)

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0, \quad \phi(a)=0, \phi(b)=0
$$

Suppose only that λ is positive: $\lambda=\mu^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}+\mu^{2} \phi=0
$$

The general solution is written in terms of sine and cosine.

$$
\phi(x)=C_{1} \cos \mu x+C_{2} \sin \mu x
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{align*}
\phi(a) & =C_{1} \cos \mu a+C_{2} \sin \mu a=0 \tag{1}\\
\phi(b) & =C_{1} \cos \mu b+C_{2} \sin \mu b=0 \tag{2}
\end{align*}
$$

Solve equation (1) for C_{1}.

$$
C_{1} \cos \mu a=-C_{2} \sin \mu a \quad \rightarrow \quad C_{1}=-C_{2} \frac{\sin \mu a}{\cos \mu a}
$$

Substitute this result for C_{1} into equation (2).

$$
\left(-C_{2} \frac{\sin \mu a}{\cos \mu a}\right) \cos \mu b+C_{2} \sin \mu b=0
$$

Assume that $C_{2} \neq 0$ and divide both sides by $C_{2} \cos \mu b$.

$$
\begin{gathered}
\left(-\frac{\sin \mu a}{\cos \mu a}\right)+\frac{\sin \mu b}{\cos \mu b}=0 \\
-\tan \mu a+\tan \mu b=0 \\
\tan \mu b=\tan \mu a \\
\mu b=\mu a+n \pi \\
\mu(b-a)=n \pi \\
\mu_{n}=\frac{n \pi}{b-a}, \quad n=1,2, \ldots
\end{gathered}
$$

Note that n has the values it does because λ can't be zero, and negative values of n yield redundant values of λ. Therefore, there are positive eigenvalues $\lambda=n^{2} \pi^{2} /(b-a)^{2}$, and the
eigenfunctions associated with them are

$$
\begin{aligned}
\phi(x) & =C_{1} \cos \mu x+C_{2} \sin \mu x \\
& =\left(-C_{2} \frac{\sin \mu a}{\cos \mu a}\right) \cos \mu x+C_{2} \sin \mu x \\
& =\frac{C_{2}}{\cos \mu a}(-\sin \mu a \cos \mu x+\sin \mu x \cos \mu a) \\
& =\frac{C_{2}}{\cos \mu a} \sin \mu(x-a) \\
& =C_{3} \sin \mu(x-a) \quad \rightarrow \quad \phi_{n}(x)=\sin \frac{n \pi(x-a)}{b-a} .
\end{aligned}
$$

Part (g)

$$
\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0, \quad \phi(0)=0, \frac{d \phi}{d x}(L)+\phi(L)=0
$$

Suppose first that λ is positive: $\lambda=\mu^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}+\mu^{2} \phi=0
$$

The general solution is written in terms of sine and cosine.

$$
\phi(x)=C_{1} \cos \mu x+C_{2} \sin \mu x
$$

Take a derivative of it with respect to x.

$$
\phi^{\prime}(x)=\mu\left(-C_{1} \sin \mu x+C_{2} \cos \mu x\right)
$$

Apply the boundary conditions now to determine C_{1} and C_{2}.

$$
\begin{aligned}
\phi(0) & =C_{1}=0 \\
\phi^{\prime}(L)+\phi(L) & =\mu\left(-C_{1} \sin \mu L+C_{2} \cos \mu L\right)+C_{1} \cos \mu L+C_{2} \sin \mu L=0
\end{aligned}
$$

The second equation reduces to $C_{2} \mu \cos \mu L+C_{2} \sin \mu L=0$. In order to avoid the trivial solution, we insist that $C_{2} \neq 0$. Then

$$
\begin{gathered}
\mu \cos \mu L+\sin \mu L=0 \\
\sin \mu L=-\mu \cos \mu L \\
\tan \mu_{n} L=-\mu_{n}, \quad n=1,2, \ldots
\end{gathered}
$$

Therefore, there are positive eigenvalues $\lambda_{n}=\mu_{n}^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
\phi(x) & =C_{1} \cos \mu x+C_{2} \sin \mu x \\
& =C_{2} \sin \mu x \quad \rightarrow \quad \phi_{n}(x)=\sin \mu_{n} x .
\end{aligned}
$$

Suppose secondly that λ is zero: $\lambda=0$.

$$
\frac{d^{2} \phi}{d x^{2}}=0
$$

The general solution is obtained by integrating both sides with respect to x twice.

$$
\frac{d \phi}{d x}=C_{3}
$$

$$
\phi(x)=C_{3} x+C_{4}
$$

Apply the boundary conditions now to determine C_{3} and C_{4}.

$$
\begin{aligned}
\phi(0) & =C_{4}=0 \\
\phi^{\prime}(L)+\phi(L) & =C_{3}+C_{3} L+C_{4}=0
\end{aligned}
$$

Since $C_{4}=0$, the second equation reduces to $C_{3}(1+L)=0$, so C_{3} must be zero as well. This results in the trivial solution, which means that zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\gamma^{2}$.

$$
\frac{d^{2} \phi}{d x^{2}}-\gamma^{2} \phi=0
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
\phi(x)=C_{5} \cosh \gamma x+C_{6} \sinh \gamma x
$$

Take a derivative of it with respect to x.

$$
\phi^{\prime}(x)=\gamma\left(C_{5} \sinh \gamma x+C_{6} \cosh \gamma x\right)
$$

Apply the boundary conditions now to determine C_{5} and C_{6}.

$$
\begin{aligned}
\phi(0) & =C_{5}=0 \\
\phi^{\prime}(L)+\phi(L) & =\gamma\left(C_{5} \sinh \gamma L+C_{6} \cosh \gamma L\right)+C_{5} \cosh \gamma L+C_{6} \sinh \gamma L=0
\end{aligned}
$$

The second equation reduces to $C_{6} \gamma \cosh \gamma L+C_{6} \sinh \gamma L=0$. To avoid getting the trivial solution, we insist that $C_{6} \neq 0$. Then

$$
\begin{gathered}
\gamma \cosh \gamma L+\sinh \gamma L=0 \\
\sinh \gamma L=-\gamma \cosh \gamma L \\
\tanh \gamma L=-\gamma .
\end{gathered}
$$

The graph of $\tanh \gamma L$ does not intersect $-\gamma$ at any nonzero value of γ, so there are no negative eigenvalues.

